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If a,b,c  0 and abc  1, then p2q2  18pq  27  p  q3,

where p : a  b  c, q : ab  bc  ca.

Solution by Arkady Alt , San Jose, California, USA.

I will use mnemonically more convenient notation, namely s : a  b  c

(s because sum), p : ab  bc  ca (p because pairly product) q : abc.

In the such notations inequality of the problem becomes

(1) s2p2  18sp  27  s  p3.

Vieta’s system

(V)

a  b  c  s

ab  bc  ca  p

abc  q

solvable iff numbers s,p,q satisfy inequality*

(B) p2s2  4p3  18pqs  4qs3  27q2  0 (Sturm Theorem) [1].

Since q  1 then inequality becomes p2s2  4p3  18ps  4s3  27  0 

s2p2  18sp  27  4s3  p3. And also since 4s2  sp  p2  s  p2 

3p  s2  0 we have 4s3  p3  s  p3. (or, by Power Mean-Arithmetic

Mean Inequality
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). Hence, s2p2  18sp  27  s  p3.

* Proof of (B).

Note that system (V) solvable in real numbers iff cubic equation

u3  su2  pu  q  0 have three real solutions.

1. Proof (with algebraic transformations).

We will prove that cubical equation have three real roots a,b,c iff

a  b2b  c2c  a2  0.

Necessity.

If roots a,b,c of equation u3  su2  pu  q  0 are real then obvious that

a  b2b  c2c  a2  0.

Sufficiency.

Let a  b2b  c2c  a2  0 and suppose that a is real but b and c are

complex numbers b    i,c    i,  0.

Then a  b2b  c2c  a2  a    ia    i22i2 
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 0. This contradict to a  b2b  c2c  a2  0.

Using identity

a  b2b  c2c  a2  a2  ab  b2b2  bc  c2c2  ca  a2 

3a2b  b2c  c2aab2  bc2  ca2 and the following s  p  q representations

a2  ab  b2b2  bc  c2c2  ca  a2  p2s2  p3  qs3,

a2b  b2c  c2aab2  bc2  ca2  9q2  p3  6pqs  qs3

we obtain

a  b2b  c2c  a2  p2s2  4p3  18pqs  4qs3  27q2.



Thus desirable criteria is

p2s2  4p3  18pqs  4qs3  27q2  0.
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