$\mathbf{p}=\mathbf{a}+\mathbf{b}+\mathbf{c}, \mathbf{q}=\mathbf{a b}+\mathbf{b c}+\mathbf{c a}, \mathbf{r}=\mathbf{a b c}$
https://www.linkedin.com/groups/8313943/8313943-6383711131508310016
If $a, b, c>0$ and $a b c=1$, then $p^{2} q^{2}+18 p q-27 \geq(p+q)^{3}$,
where $p:=a+b+c, q:=a b+b c+c a$.

Solution by Arkady Alt , San Jose, California, USA.

I will use mnemonically more convenient notation, namely $s:=a+b+c$
(s because sum), $p:=a b+b c+c a$ (p because pairly product) $q:=a b c$.
In the such notations inequality of the problem becomes
(1) $s^{2} p^{2}+18 s p-27 \geq(s+p)^{3}$.

Vieta's system
(V) $\left\{\begin{array}{c}a+b+c=s \\ a b+b c+c a=p \\ a b c=q\end{array}\right.$
solvable iff numbers s, p, q satisfy inequality*
(B) $\quad p^{2} s^{2}-4 p^{3}+18 p q s-4 q s^{3}-27 q^{2} \geq 0$ (Sturm Theorem) [1].

Since $q=1$ then inequality becomes $p^{2} s^{2}-4 p^{3}+18 p s-4 s^{3}-27 \geq 0 \Leftrightarrow$ $s^{2} p^{2}+18 s p-27 \geq 4\left(s^{3}+p^{3}\right)$. And also since $4\left(s^{2}-s p+p^{2}\right) \geq(s+p)^{2} \Leftrightarrow$
$3(p-s)^{2} \geq 0$ we have $4\left(s^{3}+p^{3}\right) \geq(s+p)^{3}$. (or, by Power Mean-Arithmetic
Mean Inequality $\left.\left(\frac{s^{3}+p^{3}}{2}\right)^{1 / 3} \geq \frac{s+p}{2}\right)$. Hence, $s^{2} p^{2}+18 s p-27 \geq(s+p)^{3}$.

* Proof of (B).

Note that system (V) solvable in real numbers iff cubic equation
$u^{3}-s u^{2}+p u-q=0$ have three real solutions.

1. Proof (with algebraic transformations).

We will prove that cubical equation have three real roots a, b, c iff

$$
(a-b)^{2}(b-c)^{2}(c-a)^{2} \geq 0
$$

Necessity.

If roots a, b, c of equation $u^{3}-s u^{2}+p u-q=0$ are real then obvious that $(a-b)^{2}(b-c)^{2}(c-a)^{2} \geq 0$.

Sufficiency.

Let $(a-b)^{2}(b-c)^{2}(c-a)^{2} \geq 0$ and suppose that a is real but b and c are complex numbers $b=\alpha+i \beta, c=\alpha-i \beta, \beta \neq 0$.
Then $(a-b)^{2}(b-c)^{2}(c-a)^{2}=((a-\alpha-i \beta)(a-\alpha+i \beta))^{2}(2 \beta i)^{2}=$ $-4 \beta^{2}\left((a-\alpha)^{2}+\beta^{2}\right)^{2}<0$. This contradict to $(a-b)^{2}(b-c)^{2}(c-a)^{2} \geq 0$.
Using identity

$$
\begin{aligned}
& (a-b)^{2}(b-c)^{2}(c-a)^{2}=\left(a^{2}+a b+b^{2}\right)\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right)- \\
& 3\left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right) \text { and the following } s-p-q \text { representations } \\
& \left(a^{2}+a b+b^{2}\right)\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right)=p^{2} s^{2}-p^{3}-q s^{3} \\
& \left(a^{2} b+b^{2} c+c^{2} a\right)\left(a b^{2}+b c^{2}+c a^{2}\right)=9 q^{2}+p^{3}-6 p q s+q s^{3}
\end{aligned}
$$

we obtain
$(a-b)^{2}(b-c)^{2}(c-a)^{2}=p^{2} s^{2}-4 p^{3}+18 p q s-4 q s^{3}-27 q^{2}$.

Thus desirable criteria is

$$
p^{2} s^{2}-4 p^{3}+18 p q s-4 q s^{3}-27 q^{2} \geq 0 .
$$

1. D.S. Mitrinovic,J.E. Pecaric and V. Volenec, Recent Advances in Geometric Inequalities, p.6)
